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COLORCON

The use of design of experiments (DOE) software and
methods allowed the authors to quantify the effects of
changes in coating process conditions on the quality
and performance of film-coated tablets. The
application of DOE has the potential to allow rapid
optimization of coating performance in a wide range of
customer application environments to meet changing
customer needs.

queous film-coating processes can influence many

quality aspects of the final coated product, includ-

ing coated-tablet moisture content, surface rough-

ness, gloss, coating efficiency, and coating unifor-
mity. Colorcon’s aqueous tablet-coating formulations must
be capable of meeting these and other customer requirements
in different gpplication ervironments around the world using
various types of coating process equipment.

Many different tablet coating machines are on the market,
each with different configuration options and different con-
trollable process parameters. Further, different configura-
tion options can be non-numeric. For example, some ma-
chines can be configured with one or more spray guns. This
situation can result in discontinuous effects on coated-
product quality and performance. One critical consequence
isthat it isnot possible to define one process operating spec-
ification that is optimal for all coating conditions.

The wide range of coating conditions (operating parame-
ters, equipment, and configuration options) also has a pro-
found consequence in terms of the development of robust
coating formulations. Such arobust formulation is one that
isinsensitive to “normal” coating process variation. The first
level of normal variation is the operating tolerances of the
controllable process parameters. However, normal varia-
tion should be extended to include the likely range of un-
controllable environmental factors known to affect product
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Table I: Response variables listed in order of importance.

Response Variable Name Variable Units
Coating uniformity (CU) milligrams

% LOD %
Coating process efficiency (CPE) %
Surface roughness Rz
Process exhaust temperature °C

Gloss GU (gloss units)

Table II: Study variables and ranges/levels.

Experiment Variable Variable
Name Units

Range
or Levels

Suspension % solids % (weight/weight)  10-20

Drying (inlet) air temperature °C 60-90
Fluid delivery (spray) rate grams/min 35-75
Atomizing air pressure psi 22-60
Pan speed rpm 8-20

Number of spray guns number lor2

Table Ill: Fixed operating settings.

Operating Parameter

Description

Pan loading

Process drying air
Coating formulation
Coating level

Spray gun pattern air

15 kg of 300-mg placebo tablets
Inlet: 250 cfm, exhaust: 300 cfm
Opadry Y-22-12656

Theoretical 3.0% weight gain
30.0 psi

Table IV: Comparison statistics of % cv and SD.

Data Set Error % R2-ad]
% cv 27.2 0.77
SD 2.1 0.93

quality and performance. Examples of such factors are ambient
temperature and humidity. The range of operating conditions
and discontinuous configuration options makes it difficult to
develop a coating formulation that is sufficiently robust for all
the various coating conditions that a particular product might
experience.

The challenge posed by the consequences described above led
usto seek acapability tha would facilitate optimization of coat-
ing quality and performance under any specific set of coating
conditions. Further, because coating conditions and customer
requirements do change, the capability needed to beflexible, al-
lowing quick reoptimization. Obviously, developing this capa-
bility required a clear understanding of coating-process effects.
Therefore, the technical goal of thiswork was to quantitatively
define the effects of critical process parameters on coating qual-

ity and performance over the range of operating conditions that
our coatings could experience worldwide. The technical goal
supported two critical business goals. The first was the creation
of baseline operating parameters that would yield compatibility
and reproducibility throughout our global technical depart-
ments. The second was the ability to rapidly optimize coating
performance under customer application environments that are
not always readily anticipaed up front and are subject to change
over time.

EXPERIMENTATION

Experiment design. Our experience has shown that process operat-
ing conditions significantly affect coating quality and perfor-
mance. In many cases these effects are not strictly additive —
process parameters can interact both synergistically and antago-
nistically. Although successive approximation experiments can
yield incremental improvement in quality or performance, the
data from these experiments do not usually enable the re-
searcher to positively identify and quantify interaction effects.
Also, studying several process parameters by trial and error is
extremely inefficient.

Over the years, Colorcon has successfully used design of ex-
periments (DOE) methods on many important projects in both
the technical services area and in R& D. DOE overcomes the
information limitations of successive approximation experi-
ments and quickly gives the kind of understanding and results
that are needed. Most important, as opposed to the only certain
goal of trial and error — incremental improvement — the un-
derlying DOE goal of quantitatively defining cause and effect
was completely in concert with the stated goal s for this program.
The DOE approach was therefore the obvious choice.

DOE isamultivariate approach to experimenting, i.e., two or
more variables (sometimes called factors) are aways studied in
one experiment. It is the most efficient method of experiment-
ing when one’s goal requires a clear definition of variable ef-
fects. Asthisarticle shows, obtaining clear cause-and-effect de-
finition al so supports the goal of product/process optimization.

Even with DOE, however, the amount of work increases sig-
nificantly as the number of study variables increases. Therefore,
we carried out a Pareto-type analysis to select the most impor-
tant process parameters for study from among the candidates.
We first selected six product quality and performance character-
istics (response variables), shown in Table |, that are of primary
importance to our customers.

We next identified 11 controllable process parameters that we
knew affected the key response variables. By group consensus
each parameter was then assigned a rank of either A or B, de-
pending on the assumed strength of its effect relative to the other
10 variablesin thelist. Thelist was divided equally in terms of
A and B assignments. Given 11 variables, we restricted the
number of A assignmentsto six. The six A-ranked process pa-
rameters became our experiment variables. Table Il presents
these six variables and their experiment ranges or levels.

Colorcon usesthe CARD software package by S-Matrix (Cu-
pertino, CA) for DOE. The package enables us to combine cor-
rectly numeric variables such as temperature and pressure with
the non-numeric variable (number of spray guns). The software
package can design classical (factorial type) designs as well as



Table V: Experiment variable term ranking — CU response.

Model Model Model Model
Term Term Coefficient Term  Term
Name Range Value Effect Rank
Pan speed 12 —0.0497 -0.5958 1.00

FD rate 40
Inlet temperature

0.0079 0.3157 0.53

X number of guns 2 —0.1520 -0.3041 0.51
(Inlet temperature)? 1 0.2404  0.2404 0.40
Number of guns 1 —0.2146 —0.2146 0.36
Inlet temperature 30 0.0046 0.1392 0.23
Percent solids 10 0.0134  0.1343 0.23
Atomizing air

X percent solids 2 0.0499 0.0999 0.17
Atomizing air 38 0.0021 0.0811 0.14

algorithm (optimality type) designs, including mixture designs,
which isimportant to our formulation studies (1,2).

For this study the software’s Navigator Wizard guided us to
an algorithm design as the correct statistical design type for our
variables and goals. The statistical design selection logic is as
follows. Our optimization goal required that we quantify all sig-
nificant variable effects, induding curvilinear (Smple deviations
from straight-line behavior) and nonlinear effects. At least three
experiment levels are required to quantify even simple curvi-
linear effects. Thus, classical two-level designs were not appro-
priate. The non-numeric variable ruled out the use of classical
three-level designs, because only two levels were available (one
or two guns). Also, theinformation properties of classical three-
level designs are based on all experiment variables being nu-
meric. Analysis of data from these designs cannot provide cor-
rect effects estimation for non-numeric variables, the effects of
which are discontinuous by naure (2). The algorithm design ac-
commodated our variable types and our goals. In addition, it is
advantageous to define numeric variables as continuous vari-
ables when possible, because fewer experiment trials are re-
quired to define completely cause and effect. Therefore, defin-
ing our numeric variables as continuous and using an algorithm
design resulted in a smaller number of trials than would have
been required by a classical design.

Experiment equipment. We used an O’ Hara Technol ogies (Scar-
borough, ON, Canada) Labcoat |1 coating machine (fitted with a
24-in. pan and accommodating one or two spray guns) in this
study. The five B-ranked process parameters were assigned con-
stant operating conditions for the experiment. Table I11 presents
these five parameters and their constant conditions.

Each coating trial in this experiment used 300-mg, round
placebo tablets. The tablet core (uncoated tablet) consisted of
modified starch (49.75%), microcrystalline cellulose (49.75%),
magnesium stearate (0.25%), and colloidal silicon dioxide
(0.25%).

An agueous Colorcon coating (Opadry Y-22-12656) formu-
lated with ayellow pigment was used in this study. We chose
yellow to allow usto track specific tablet cores through the coat-
ing process. For each experiment trial, we numbered 100 indi-
vidual tablet cores using a black marker before coating. Each
marked core was then dried to constant weight and the weight
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was recorded. The marked tablets were then added to the 15-kg
tablet load before coating. After application of the coating (to a
theoretical 3% weight gain), the tablets were sorted, each
marked, coated tablet was again dried to constant weight, and
the weight was recorded. The difference in weight is the actual

weight gain, i.e., the number of milligrams of coating applied
to the core.

Tracking individual tablet cores and drying the marked tablets
to constant weight before and after coating allowed us to elimi-
nate weight gain measurement errors due to changesin moisture
content, thereby yielding an accurate measure of weight gain for
each experiment trial (3). The more accurate weight gain data
resulted in better cause-and-effect definition for the coating uni-
formity response.

RESULTS AND DISCUSSION

Our full study addressed all six responseslistedin Table . How-
ever, the results presented here were obtained from analysis of
the first three key responses listed in the table, namely coating
uniformity (CU), tablet moisture content after coating (percent
losson drying [% LOD]), and coating process efficiency (CPE).
These responses are critically important because they affect
drug release profiles, drug and core stability, and the econom-
ics of the coating process.

Coating uniformity (CU) is of primary importance, espe-
cially when the coating functions as a major factor in influenc-
ing drug release. For example, atablet that has received too
little coating will release drug too rapidly (possibly causing
“dose dumping”), while drug release from atablet that hasre-
ceived too much coating material will almost certainly release
drug more slowly than expected. Wide variationsin the amount
of coating received by individual tablets within a batch may
also have some effect on the dissolution rate of drug even from
immediate-rel ease tablets.

CU is generally defined as the variation in weight gain of
coated tablets within a coating trial. The commonly reported
measure of CU is the coefficient of variation (% cv), whichis

calculated as
\/Z[Wt Wtbl) %
(1]

where wt; and wty, are the weights of tablet i after and before
coating, respectively, corrected for moisture content by drying
to final weight; nisthe number of tablets measured; and X is
the average weight gain of the n measured tablets from the coat-
ing trial (4). Note that the numerator in the equation is simply
the first standard deviation (SD) of the variation in weight gain
within atrial.

A dependent relationship exists between weight gain and CU
typically at weight gains <2%. The CU can be >40% at a
weight gain of 1%, and drop well below 20% asthe weight gain
increases to 2%. However, at weight gains >2% this depen-
dency breaks down, and the mean weight gain no longer imparts
a constant bias to the variation in weight gain. In other words,
at weight gains >2% there is no relationship between mean
weight gain and weight gain variation. (The dependency be-

%cv=
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Figure 1. Experiment variable term ranking — CU response.

tween weight gain and CU isactually an artifact of coating time
Higher weight gain requires alonger coating time, so individ-
ual tablets have more opportunity to become evenly coated.)

As aresult of the dependency breakdown, dividing the SD
by the mean weight gain (to obtain the % cv) introduces aran-
dom error component into the % cv calculation, causing the %
cv data to have more error than the SD data from which it is
derived. Thisresult in turn compromises data analysis. There-
fore, when the weight gainsin a dataset are =2%, the SD isa
better measure of CU than % cv.

In our data set the measured weight gain ranged from 0.79%
to the 3% target. However, more than 80% of the data showed
weight gains >1.75%. To confirm that the SD is a more accu-
rate representation of CU than % cv in our data set, we ana-
lyzed both. Two key statistics — the adjusted R square (R?-
Adj) and the error percent — obtained from each analysis are
presented in Table 1V. The R2-Adj is the decimal equivalent of
the percent of the response data variation that is explainable
by the current analysis model. The error percent is the percent
of the response data variation that can be attributable to over-
all experimental error.

When one compares the statisticsin Table 1V, it is clear that
SD isamore accurate representation of CU. Therefore, for the
remainder of this article the CU response is defined as thefirst
standard deviation of weight gain variation (in milligrams).

In the CU analyses the software package identified two of
the trials as outliers and recommended that it be allowed to drop
thetrial datafrom the data set before continuing the analysis. An
outlier is an observed response value for agiven trial that dis-
agrees significantly with the corresponding model-predicted
value based on the estimated variable effects. The outliers cor-
responded to trials that we suspected had problems due to ex-
posure to moisture during weighing.

The CARD software automatically executes several inter-
related analyses and cross-compares the results as part of its
overall analysis function. Based on itsinterna cross-compari-
son, the software identified the response data as nonlinear and
the correct transformation required before continuing the analy-
sis. The nonlinear character of the response data arises from
the dependency between mean coating weight gain and varia-
tion in weight gain. Recall that this dependency affects ~20%
of the data with mean weight gains <1.75%, resulting in arel-

ative (nonlinear) error. We therefore accepted the recommen-
dation and |et the package transform the data. Fortunately, we
were not required to interpret analysis results corresponding to
a transformed mathematical space, because it automatically
back-transformed the completed analysis resultsinto real-world
terms.

The software’s default analysis settings provide afinal re-
sponse mode that contains only stdtistically valid variable effect
terms. As part of the analysis output, it ranks these terms based
on the relative strengths of their effects on the response being
anayzed. Table V showsthe variable-term ranking for the CU
analysis results. In the table, a given term’srank is based on its
effect on the response across its experiment range relative to
the effect of the strongest effecting term. To illustrate, the spray
rate, or fluid delivery (FD) rate, has a relative rank of 0.53,
which means that its direct effect on CU across its range was
53% of the direct effect of pan speed, the strongest effector.
Note that the interaction between the inlet air temperature and
the number of guns (inlet temperature X number of guns) is
the third strongest effector of CU.

Theranking is aso presented graphically in Figure 1, which
isatranslation of the numerical ranking in Table V into apie
chart. The chart shows the effect of each experiment variable
term across its range as a percent of the total combined effects of
all variables acrosstheir ranges. The ranking pie chart also iden-
tifies pan speed as the largest direct effector of CU, followed
by FD rate, drying air temperature (inlet temperature), and num-
ber of guns (5).

The linear, interaction, and curvilinear effects of the experi-
ment variables in the ranking table are best visualized using re-
sponse surface graphs. Figure 2 is a response surface graph
showing the effects of both pan speed (x axis) and inlet temper-
ature (y axis) on CU (zaxis) acrosstheir experiment ranges. The
figure clearly shows that increasing the pan speed reduces
weight gain variation. For example, given an inlet temperature
of 60 °C, the CU (weight gain SD) changes from +1.9mg at 8
rpmto 1.0 mg at 20 rpm. Figure 2 also shows the curvilinear
effect of inlet temperature, which results in high weight gain
variation & the low and high end of its experiment range relative
to the middle of the range.

The CU response ranking table (Table V) also reveals that
the number of guns strongly interacts with the inlet air temper-
ature. Recall tha thisinteraction isthe third strongest effector of
CU. By definition an interaction between two variables means
that the effect of one variable on a given response across its
rangeis different at different level settings of the other interact-
ing variable. Interactions therefore express dependent relation-
ships between variables — the observed effect of one variable
depends on the level setting of the other variable.

As steted earlier, interactions between variables are best visu-
alized graphically. However, the fact that the number of gunsis
anon-numeric variable means that two response surface graphs
are needed to see the interaction effect. Figure 3 is a second re-
sponse surface graph of pan speed and inlet temperature. In this
case we have changed the number of gunsto two. By comparing
Figures 2 and 3 we can see the direct and interaction effects of
increasing the number of guns. The response surface is lower
overal in Figure 3 (two guns) relative to Figure 2 (one gun).
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Figure 2: CU response surface for one spray gun.

These results show that changing from one spray gun to two
directly reduces weight gain variation. The flatness of the re-
sponse surface in Figure 3 relative to Figure 2 illustrates the in-
teraction effect — increasing the number of guns dampens the
strong curvilinear effect of inlet temperature.

The flatter response surface in Figure 3 relative to Figure 2
means that CU isless sensitive to variation in inlet temperature
when two guns are used. This has an important consequence in
terms of CU robustness when considering the influence of
process variation on CU. More than half of the response sur-
facein Figure 2 corresponds to combinations of pan speed and
inlet temperature when the CU exceeds =1.3 mg. An SD of
+1.3 mg corresponds to 95% confidence limits of 2.6 mg.
Given a 300-mg tablet core, this equals a =0.86% variation in
weight gain. Thus, more than half of all combinations resultina
coated tablet weight gain variation that exceeds *+0.86% when
one spray gun is used. In contrast, almost the entire response
surface in Figure 3 corresponds to level setting combinations
of pan speed and inlet temperature when the CU iswell below
+1.3mg. Thus, amost all combinations result in weight gain
variation below +0.86% when two spray guns are used.

% LOD is ameasure of the moisture content of the tablet. It
can be extremely important to both tablet core and drug stabil-
ity. % LOD is a process-driven property that expresses over-
wetting or overdrying of the core during coating. Theideal cir-
cumstance isto have no net gain or loss of core moisture content
due to coating.

% LOD isthe moisture content of the coated tablet expressed
as percent weight. % LOD is calculated as

Wtb_Wta

%LOD= ("% | x 100% [

where wt,, and wt, are the coated tablet weights before and af-
ter drying, respectively. In this case we used a 4-0z. retain jar
of tablets. The tablets were weighed, dried at 60 °C for 24 h,
then reweighed. All placebo tablet cores used in this study had
an initial (uncoated) moisture content of 3%.

In this study the % LOD response ranged from 0.10% to
5.33%, indicating that one or more of the experiment variables
had a substantial effect on this response. In other words, the

Figure 3: CU response surface for two spray guns.

coating conditions in the experiment design expressed a broad
range from severe overdrying to severe overwetting. The ex-
periment variable ranges were deliberately set sufficiently wide
to allow a broad response range. Remember that the goal of a
designed experiment is not incremental improvement in quality
but clear quantification of cause and effect. Overly restrictive
experiment variable ranges translate into small response ranges,
thus making it difficult for data analysis to distinguish variable
effects from background error variation.

Figure 4 graphically presents CARD’s experiment variable
term ranking for the % LOD analysis results. This ranking iden-
tifiesinlet temperature as the largest direct effector of % LOD,
followed by FD rate and number of guns. Note that the concen-
tration of suspension solids (% solids) interacts with inlet tem-
perature, number of guns, and FD rate. These direct and inter-
action effects are important in terms of coating quality versus
batch processing time. A high % solids reduces the batch pro-
cessing time, as does ahigh FD rate. However, faster batch pro-
cessing times must not come at the expense of coated-product
quality. An optimized coating process is one in which the batch
processing time is minimized while appropriate product qual-
ity isachieved.

At this point we used the software’s Optimizer Wizard func-
tion to evaluate the potential to optimize the coating process
for both CU and % LOD over arange of % solids and FD rates.
To do this we set the response goals in the Wizard to minimize
CU while simultaneously hitting a 3% target for % LOD. We
carried out optimizations in which we looked at al combina-
tions of % solids and FD rate for both one and two spray guns.
The Optimizer Wizard defined coating conditions that would
achieve the 3% target for % LOD under all combinations of %
solids and FD rate across their experiment ranges while keeping
the CU below *=1.0 mg. However, the optimization analysis
defined that in every case a better CU (smaller SD) would be
achieved by using two spray guns.

Coating process efficiency (CPE) is a measure of the actual
amount of coating applied to the tablets relative to the theoreti-
cal quantity of coating applied. It can therefore be another indi-
cator of overwetting or overdrying. When overwetting occurs,
material can potentially be transferred from the surface of the
tablets to the walls of the coating pan, thus reducing CPE. Con-
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Figure 5. Experiment variable term ranking — CPE response.

versely, when overdrying occurs, coating solution can dry pre-
maturely in the air stream (commonly called spray drying) and
be lost into the exhaust air stream instead of being transferred
to the tablets. These circumstances have the same implications
as those previously mentioned for moisture content (% LOD),
with the additional obvious economic issue of lost coating.

CPE isgenerally defined asthe actual percent weight gain rel-
ative to the theoretical percent; atheoretical 100% transfer of
coating to the tablets would mean no lost coating. CPE is com-
puted as

%wg,
% wg,

CPE = ( ) x 100% (3]
where wg; is the theoretical percent weight gain, which in this
experiment was 3% in every coating trial, and wg, is the actual
percent weight gain, which is computed as

Wta_Wtb

Processing % wg, = (Tb) x 100% (4

where wt,, and wt, are the total batch weights before and after
coating, respectively.

In this study the CPE response ranged from 25% to almost
100%, indicaing abroad range from extremely inefficient (75%
of coating lost) to almost perfect efficiency (no coating lost).

The experiment variable term ranking for the CPE analysis

resultsis presented graphically in Figure 5. The ranking identi-
fiesFD rate asthelargest direct effector of CPE, followed by in-
let temperature and atomizing air pressure. In fact, the direct, in-
teraction, and curvilinear effects of these three variables are
responsible for all of the variation in the CPE data beyond that
attributable to experimental error. It is noteworthy that FD rate
and inlet temperature were the two main effectors of % LOD
and were two of the three main effectors of CU (the third being
pan speed).

The fact that critical responses have effector variablesin
common is not necessarily desirable from an optimization
standpoint, because changing a variable level setting to im-
prove one response will certainly change the other critical re-
sponses it affects. In many cases a variable's effects on differ-
ent responses can be competing, i.e., a change that improves
one response will degrade another (5). This can be the case for
FD ratein terms of the CPE and % L OD responses. FD rate can
be a positive effector of CPE (increasing the spray rate can im-
prove coding efficiency). However, FD rate can simultaneously
be a negative effector of % LOD (increasing the spray rate can
cause overwetting). This circumstance is complicated further
by the presence of interactions between variables. Interactions
can cause a variable effect to switch from competing to com-
plimentary, depending on the level settings of the variablesin-
volved in the interaction.

It isthe complexity of variable effects on critical responses
that makes multiple response optimization difficult. Adding to
the difficulty are changing application environments and cus-
tomer needs. Before acquiring automated optimization software,
we were forced to compare manually the numerical analysis
results and graphs for each critical property. This was atremen-
dously laborious process at best, and often not enough time was
available to explore al possible opportunities.

However, the present situation is profoundly improved. We
can now simply integrate the analysis results for all our proper-
ties through CARD’s multiple response Optimizer Wizard, set
our response goals, and let the computer do the work. For ex-
ample, by adding the goal of =80% for CPE to the previously
defined optimization goals (minimize CU, 3% LOD) and re-ex-
ecuting the optimization feature, the software identified experi-
ment variable levels that would yield a CU of +£0.85mg, a3%
LOD, and a CPE of 85%. We can also easily evaluate tradeoffs
such asalowing dight flexibility in thetarget % LOD to improve
coating efficiency, or relaxing the coating efficiency goal to see
what improvement might be gained in coating uniformity.

CONCLUSIONS

The results we obtained from thiswork clearly defined the base-
line operating parameters that yield compatibility and repro-
ducibility throughout our global technical departments — our
first stated goal of this program. Unambiguous quantitative re-
sults of thiskind are reguired to replace partial understanding
and conventional wisdom, which can vary from lab to lab. The
need for, and value of, hard data in this area was emphasized
by acall we recently received from a major pharmaceutical
manufacturer tha wanted to know if we had any specific data on
the relative merits of using one versus two spray gunsin coating
machines configured with 24-in. pans.



Our customers' coating processes and product quality needs
will certainly change over time. It will also almost always be
true that more than one process parameter or product quality
will change at atime. Thus our achievement of a multiple re-
sponse optimization capability — our second program goal —
will be avaluable tool in helping to deal with these circum-
stances. Colorcon has deployed the CARD software package
and these program results throughout its global technical de-
partments so that it can optimize coating performance to meet
changing customer needs and application environments.

A recurrent objection to DOE isthat it requires too many ex-
periments. Our analysis of work done over long periods con-
cludes that for many R&D and technical services programs,
what appeared as many small focused experimentsin fact con-
stituted very large experiments conducted afew trials at atime.
However, as opposed to efficient, statistically designed experi-
ments, these digjointed cycles of work, which translated into
many more experiments overall, did not yield the same unam-
biguous quantitative results. The excellent results we achieved
on this program underscore the val ue Colorcon achieves through
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DOE. Although in many instances the results obtained were
generally anticipated, there were important instances in which
the results were equally unexpected. These important results
would almost certainly not have been obtained by conventional-
wisdom-driven trial-and-error experiments. We get an addi-
tional benefit from DOE with CARD — the ability to build upon
historical data. As an example, we will use the results of the
additional responses not described in this article as a baseline
for future product development projects.
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