

Fusion QbD

Advanced QbD Software for Analytical Method Validation and Transfer

S-Matrix Corporation www.smatrix.com

© 2024 S-Matrix Corporation. All Rights Reserved.

A Complete Solution for APLM Stages 1 and 2

Analytical Procedure Lifecycle Management Workflow

Referenced Guidance Documents – ICH

Referenced Guidance Documents – USP

@2024 USPC

Printed on: Thu Mar 07 2024, 04:42:23 PM(EST) Printed by: George Cooney Do Not Distribute

Status: Currently Official on 07-Mar-2024 Docld: GUID-35D7E47E-65E5-49B7-B4CC-4D96FA230821 2 en-US Official Date: Official as of 01-May-2022 Document Type: GENERAL CHAPTER DOI Ref: 46nba DOI: https://doi.org/10.31003/USPNF_M10975_02_01

Add the following

▲ (1220) ANALYTICAL PROCEDURE LIFE CYCLE

INTRODUCTION

- This general chapter holistically considers the validation activities that take place across the entire life cycle of an analytical procedure and provides a framework for the implementation of the life cycle approach.
- The analytical procedure life cycle approach described here is consistent with the quality by design concepts described in International Council for Harmonisation (ICH) guidelines. The procedure life cycle approach emphasizes the importance of sound scientific approaches and quality risk management for the development, control, establishment, and use of analytical
- procedures. Total error is used in this chapter; however, measurement uncertainty can also be used. The procedure life cycle approach is applicable to all types of analytical procedures, and the extent of effort should be consistent with the complexity of the procedure and the criticality of the quality attribute to be measured. The life cycle approach can be considered optional, and any of the elements can be applied on the basis of how the procedure is used. Elements of the life cycle approach can also be applied retrospectively if deemed useful or in early stages of development with the appropriate modifications.
- Elements of life cycle management of analytical procedures are also discussed in Analytical Procedures and Methods Validation for Drugs and Biologics (Guidance for Industry, FDA 2015). Validation of an analytical procedure is the process by which it is established, through laboratory studies, that the performance
- of the procedure meets the requirements for the intended analytical applications. Validation, or demonstration that a procedure is suitable for the intended purpose, takes place during the entire procedure its cycle, beginning during the initial procedure design activities and extending through rough eactivities include the formal procedure validation, verification, and transfer of procedures and assuing and assuing admension ta appropriate set of procedure and the setablishing the entire procedure and the procedure and the setablishing the entire procedure and the procedure and the procedure and the setablishing the setablishing the entire procedure and the procedure and the setablishing the setablishing the entire procedure and the procedure and the procedure and the procedure and the setablishing the setablishing the procedure and the controls and system suitability requirements.
- The procedure life cycle is comprised of the analytical target profile (ATP) and three stages, which are introduced below and shown in Figure 1.
- The ATP defines the criteria for the procedure performance characteristics that are linked to the intended analytical application and the quality attribute to be measured. It applies to all stages of the procedure life cycle. For quantitative procedures, the ATP describes the required quality of the reportable value since the reportable value generated using a qualified analytical procedure provides the basis for key decisions regarding compliance of a test article with regulatory, compendial, and manufacturing limits. The acceptable level of risk of making an incorrect decision can also be considered when establishing ATP criteria.
- Stage 1: Procedure design encompasses procedure development, which consists of the analytical technology and sample preparation. It includes understanding gained through knowledge gathering, systematic procedure development experiments, and risk assessments and associated lab experiments. The output of Stage 7 includes:
- 1. A set of procedure conditions that minimizes procedure bias to a suitable level, can provide acceptable precision, and can meet the ATP criteria
- 2. An understanding of the effect of procedure parameters (e.g., temperature, wavelength, flow rate, etc.) on procedure performance
- Optimization of performance characteristics of the analytical procedure such as accuracy, precision, the appropriateness of any calibration model, specificity and limit of quantitation (as far as applicable); this includes a preliminary replication strategy for samples and standards
- An initial analytical control strategy (ACS), which is a set of controls (system suitability tests [SSTs] and other procedure-specific controls) needed to ensure proper performance

Stage 2: Procedure performance qualification consists of studies designed to demonstrate that the procedure is suitable for its intended purpose. This involves confirmation that the reportable values generated by application of the analytical procedure meet the ATP criteria as well as confirmation of procedure performance characteristics through the traditional validation, verification, or transfer studies. Data generated during Stage 1 can be used if available and suitable. At the end

of stage 2, the replication strategy and the performance of the procedure is confirmed to meet the ATP and other criteria. Stage 3: Ongoing procedure performance verification involves monitoring the analytical procedure during routine use and confirming that the performance continues to meet ATP criteria. Monitoring ensures that the performance of the procedure is maintained at an acceptable level over the procedure lifetime. It can also provide an early indication of potential performance issues or adverse trends and aid in identifying required changes for the analytical procedure. Confirming procedure performance after changes ensures that the modified procedure will produce reportable values that meet the criteria defined in the ATP.

More details about the procedure life cycle are described in the subsequent sections.

https://online.uspnf.com/uspnf/document/1_GUID-35D7E47E-65E5-49B7-84CC-4D96FA230821_2_en-US

1/12

Printed on: Sat. Mar 16 2024, 07:59:46 PM(EST) Status: Currently Official on 17-Mar-2024 Printed by: George Cooney Official Date: Official as of 01-May-2018 Do Not Distribute DOI Ref: saf9m

Dockd: GUID-13ED48EB-4086-4385-A7D7-994A02AF25C8_7_en-US @2024 USPC DOI: https://doi.org/10.31003/USPNF_M8646_07_01

Add the following:

▲ (1210) STATISTICAL TOOLS FOR PROCEDURE VALIDATION

- 1. INTRODUCTION
- 2. CONSIDERATIONS PRIOR TO VALIDATION
- 3. ACCURACY AND PRECISION
- 3.1 Methods for Estimating Accuracy and Precision
- 3.2 Combined Validation of Accuracy and Precision 4. LIMITS OF DETECTION AND QUANTITATION
- 4.1 Estimation of LOD
- 4.2 Estimation of LOQ

REFERENCES

- 5. CONCLUDING REMARKS

1. INTRODUCTION

This chapter describes utilization of statistical approaches in procedure validation as described in Validation of Compendial Procedures (1225). For the purposes of this chapter, "procedure validation" refers to the analytical procedure qualification stage of the method life cycle, following design and development and prior to testing.

Chapter (1225) explains that capabilities of an analytical procedure must be validated based on the intended use of the analytical procedure. Chapter (1225) also describes common types of uses and suggests procedure categories (I, II, III, or IV) based on the collection of performance parameters appropriate for these uses. Performance parameters that may need to be established during validation include accuracy, precision, specificity, detection limit [limit of detection, (LOD)], quantitation limit, linearity, and range. In some situations (e.g., biological assay), relative accuracy takes the place of accuracy. This chapter focuses on how to establish analytical performance characteristics of accuracy, precision, and LOD. For quantitative analytical procedures, accuracy can only be assessed if a true or accepted reference value is available. In some cases, it will be necessary to assess relative accuracy. In many analytical procedures, precision can be assessed even if accuracy cannot be assessed. The section addressing LOD can be applied to limit test in Category II. The other analytical performance characteristics noted in (1255), which include specificity, robustness, and linearity, are out

of scope for this chapter.

Because validation must provide evidence of a procedure's fitness for use, the statistical hypothesis testing paradigm is commonly used to conduct validation consistent with (1225). Although some statistical interval examples are provided in 3. Accuracy and Precision, these methods are not intended to represent the only approach for data analysis, nor to imply that alternative methods are inadequate.

Table 1 Analytical Procedure Validation Terminology

Table 1 provides terminology used to describe an analytical procedure in this chapter. The definitions for individual determination and reportable value are in alignment with General Notices, 7.10 Interpretation of Requirements.

Terminology	Description				
Laboratory sample	The material received by the laboratory				
Analytical sample	Material created by any physical manipulation of the laboratory sample, such as crushing or grinding				
Test portion	The quantity (aliquot) of material taken from the analytical sample for testing				
Test solution	The solution resulting from chemical manipulation of the test portion such as chemical deriva- tization of the analyte in the test portion or dissolution of the test portion				
Individual determination (ID)	The measured numerical value from a single unit of test solution				
Reportable value	Average value of readings from one or more units of a test solution				

Not all analytical procedures have all stages shown in Table 1. For example, liquid laboratory samples that require no further manipulations immediately progress to the test solution stage. Demonstration that a reportable value is fit for a particular use is the focus of analytical validation. Table 2 provides an example of the Table 1 terminology for a solid oral dosage form.

Table 2. Example for Coated Tablets

Terminology	Description			
Laboratory sample	100 coated tablets			
Analytical sample	20 tablets are removed from the laboratory sample and are crushed in a mortar and pestle			
Test portion	Replicate 1: 1 g of crushed powder aliquot from the analytical sample	Replicate 2: 1 g of crushed powder aliquot from the analytical sample		

https://online.uspnf.com/uspnf/document/1_GUID-13ED4BEB-4086-4385-A7D7-994A02AF25C8_7_en-US

1/12

4

A Complete Solution for APLM Stage 2

METHOD VALIDATION MODULE

- Full Validation Experiment Suite
- Instant Analysis and Reporting
- Advanced Method Transfer Support
- Meets all Regulatory Requirements

All the Critical QbD Capabilities You Need

Critical QbD Capability

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Complete Method Validation Experiment Suite

Simple Experiment Workflows

Full LC Experiment Automation

USP 1210> Tolerance and Prediction Interval Metrics

- Replication Strategy and Total Analytical Error
- Accuracy and Repeatability
- Analytical Method Transfer

Critical QbD Capability	<u>FMV</u>				
Supports All Install Environments (Citrix Ready Certified)	\checkmark				
Full 21 CFR Part 11 Compliance Support	\checkmark				
Complete Method Validation Experiment Suite	\checkmark				
Simple Experiment Workflows					
Full LC Experiment Automation					
USP 1210> Tolerance and Prediction Interval Metrics	\checkmark				
 Replication Strategy and Total Analytical Error 					
 Accuracy and Repeatability 					

• Analytical Method Transfer

Supports All Install Environments

Install Environment

Standalone (Workstation)

Network (Enterprise)

Citrix Ready Certified

Fully Qualifiable for GXP Environments*

* - Fusion QbD is operating in the GxP environments of international pharmaceutical companies worldwide.

Example Network Deployment

Critical QbD Capability

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Complete Method Validation Experiment Suite

Simple Experiment Workflows

Full LC Experiment Automation

USP 1210> Tolerance and Prediction Interval Metrics

- Replication Strategy and Total Analytical Error
- Accuracy and Repeatability
- Analytical Method Transfer

Full Part 11 Compliance Support

Full Support for 21 CFR 11 Compliance

Full integration of all e-record and all e-signature features and functions required to support full 21 CFR 11 compliance.

Integrated Workflow Management and Secure Project Management Systems.

Full audit trail, including bi-directional auditing of all data exchanges with the CDS.

Why Audit Trail is Important!

Where did this data come from? Empower Project? **Results Set?** Chromatograms?

Critical QbD Capability

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Complete Method Validation Experiment Suite

Simple Experiment Workflows

Full LC Experiment Automation

USP 1210> Tolerance and Prediction Interval Metrics

- Replication Strategy and Total Analytical Error
- Accuracy and Repeatability
- Analytical Method Transfer

- Replication Strategy*
- Specificity
- Filter Validation
- Sample Solution Stability
- Accuracy*
- Linearity & Range
- Repeatability*

- Accuracy / Linearity / Repeatability*
 [Combined as per ICH Q2(R1)]
- LOQ*, LOD*
- Intermediate Precision and Reproducibility
- Validation Robustness LC
- Validation Robustness Non-LC

[e.g. Sample Preparation, Dissolution]

Method Transfer Study Support*

integration of USP <1210> Tolerance & Prediction Intervals]

All the Critical QbD Capabilities You Need

Critical QbD Capability

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Complete Method Validation Experiment Suite

Simple Experiment Workflows

Full LC Experiment Automation

USP 1210> Tolerance and Prediction Interval Metrics

- Replication Strategy and Total Analytical Error
- Accuracy and Repeatability
- Analytical Method Transfer

S-Matrix Simple Workflow with Complete QbD Reporting

Example: Accuracy / Linearity / Repeatability – Combined Experiment

reate New Work File	
Project Select Project User Defined	Audit Logging Enabled
Project Name Project 1	
Instrument	Sample Compound Type
Fusion QbD Demo H_Class	Small Molecule C Large Molecule
Instrument Type: LC	Experiment Phase
Pump Module: Quaternary	Final Phase Method Validation
	Experiment Type Analytical Capability Specificity Accuracy Linearity and Range Repeatability Accuracy, Linearity, Repeatability
	Robustness Non-LC
	OK Cancel

1. Simple Experiment Setup Template

xperiment Setup	Replication Settings		
Global Compound Setting Assay Type A: No. of Comp No. of Levels per Com 100% Std. Lev	s ssay Type Name pounds 2 pound 5 - vel Level 3 -		
Compound Name	Units	Level Settings	
Compound 1	%	Level 1	80
		Level 2	90
		Level 3	100
		Level 4	110
		Level 5	120
Compound Name	Units	Level Settings	
Compound 2	%		80
		Level 2	90
		Level 3	100
		Level 4	110
		[

Create and Maintain Templates.

Set Automatic E-Review and E-Approve Loops.

2. Standards Setup Options

andard	s Strategy		/_					Flexible setup of th
alibratio	on and Check	Standards	- <					required Standards
None S acketii rand Ar	ielected> ng - NonOverl verage	ар		Check Sta	andards Sche	me	_	Strategies.
alibratio	on and Check	Standards	-	No), of Standard	s per Group 1	•	
ulti-levi	el Bracketing ·	Uverlap						
No. o	if Repeat Inject	ctions per Lev	vel 1 <u> </u>	No. of In	jections Betw	een Groups 5	-	
	Run No.	API	Impurity 1	Impurity 2	Degradan t A	Degradan t B		<u> </u>
1	CAL - L1.1							-
2	CAL - L2.1							
3	CAL - L3.1							
4	CAL - L4.1							
5	CAL - L5.1							
6	Chk - 1.a	100	100	100	100	100		
7	1.a	80	80	80	80	80		
8	1.Ь	80	80	80	80	80		
9	1.c	80	80	80	80	80		
10	1.d	80	80	80	80	80		
11	1.e	80	80	80	80	80		
12	Chk - 1.b	100	100	100	100	100		
12	2.5	90	lan	90	lan			•
<u> </u>								
Validat	tion Status: Vo	ur settings a	na valid					
Y GILGO	ion otatus. Te	on seconds di	o valia.					•
								÷
						1 520	II. as	

3. Auto-generated Experiment Design

🐺 Analytical Method Validation	- Untitled1.sm	ae						$ \Box$ \times	
<u>File Edit Activity Tools Wind</u>	ow <u>H</u> elp				/	1			
D 🖻 🖻 🗑 🕼 👢 🎒 🚺	🗐 🦅 Edit Ri	un No. Label	s 💷 S	tandards Setup	E Er	Import Image	s 🕜		
Design of Experiments • Create a Design Design Reports Data Entry / Analysis • Data Entry	Design Experi Instrur Experi Experi	Reports ment Design ment Report ment Design ment Setup		- <		Co	mprehe	nsive, automa	ated reporting.
O Data Analysis Reporting Toolkit O Fusion Reporter O Audit Log Reporter									
- Audi Lug Reputer		Name: A Company Project: I	dminis y: S-Ma User De	trator atrix efined		NT 07-001			
		Experin	gust 19)esian - Ac	curacv/Lin	mi-or:ooj	atability	_	
		Experime	ent Des	ign Matrix				_	
		Run No.	API (%)	Impurity 1 (%)	Impurity 2 (%)	Degradant A (%)	Degradant B (%)		
		CAL - L1.1	100	100	100	100	100	1	
		CAL - L2.1	100	100	100	100	100]	
		CAL - L3.1	100	100	100	100	100		
		CAL - L4.1	100	100	100	100	100		
		CAL - L5.1	100	100	100	100	100		
		Chk - 1.a	100	100	100	100	100	4	
		1.a	80	80	80	80	80	4	
		1.b	80	80	80	80	80	4	
		1.c	80	80	80	80	80	-	
	1	1.c 2.a	80 90	80 90	80 90	80 90	80 90	v	
Death	<	1.c 2.a	80 90	80 90	80	80 90	90	>	3

4. Analysis Wizard for CDS Imported Results

	X Method Validation - Small Molecule Data Analysis
	Accuracy Linearity Repeatability Repeatability Accuracy Analysis Associate responses with Analyses: Peak Area API API
	Perform Data Analysis
	Compound-based Acceptance Criteria
	Calculation Method(s) Calculation Options Calculation Method(s) ICH-Q2B USP <1210> Significance Level 5% Include LOQ and LOD,
Set Global and	Data Based O Model Based LOQ Calculatation(s) LOD Calculatation(s) Select Calculation
Level-specific	Intercept % Bias <=
Acceptance	
Criteria.	Level-based Acceptance Criteria
including Spec	Computed Results Source Data
Limits for Data	
	Linearity Response Factor Individual Results Level % Bias of Residuals <=
	1.000 5.00 1.000 1627663 1798996 2.000 5.00 2.000 3340993 3512326
	4.000 5.00 4.000 6767652 6938985 v
	The settings are valid.
	Back Finish Cancel

5. Instant Analysis, Graphing, and Reporting

ICH Q2(R2):

Data derived from the regression line may help to provide mathematical estimates of the linearity. A plot of the data, the correlation coefficient or coefficient of determination, y-intercept and slope of the regression line should be provided. An analysis of the deviation of the actual data points from the regression line is helpful for evaluating linearity (e.g., for a linear response, the impact of any non-random pattern in the residuals plot from the regression analysis should be assessed).

Linearity and Range Report: API - Amount (mg)

Linearity and Rance Data Table

Run Ne.	Target API (mg)	Actual Amount (mg)	API- Amount
1.8	1.000	1.009	1.091
1.5	1.000	1.01	1.062
14	1.000	1.012	1.109
2.8	2.000	1.895	2.109
2.5	2.000	1.89	2.099
2.4	2.000	2.004	2.048
ŝ.a	4.000	9,999	4.118
9.b	4.000	4	4.097
2.6	4.000	3,997	4.099
é.a	5.000	\$.005	5.107
4.5	5.000	4.992	5.064
44	5.000	5.009	5.065
54	6.000	9.006	5.89
5.5	6.000	6.009	5.959
5.6	6,000	5.997	6,007

General Regression Statistics Table

tegression Statistic Jame	Searlieric Value	Pasa / Fail
	0.9997	Pass
Siguare	0.9999	
dj. R Sguare	0.9993	
kee iduusi MSE	0.00258	
candard Error (e)	0.05092	
4 95% C1	0.11001	
narcege% Blas	2.49	
beervations.	15	
examples Collegion - Dans	aaaloo min 0.9	000

Regression ANOVA Statistics Table

Source of Variation	Sum of Squares	Degrees of Freedom	Hean Square	F-Ratio	P-Value
Regression	49.62199	1	49.92199	18,219,2588	0.0001
Residual	0.09971	12	0.00258		
Total	49.95570	14			

Regression Coefficients Table

Natural Variable Mode

API - Amount (pred) = 0.12532 + (0.98321 x API)

Dance

1.003 <= API <= 5.997

Residuals Table

Actual API - Amount (mg)	Predicted API - Amount	Observed API - Amount	Realitude	% Disa of Realdusia	Silita Pasa Fall
1.009	1.11148	1.091	-0.02048	-2.04	Fall
1.01	1.11697	1.092	0.09697	-9.60	Fall
1.012	1.12099	1.109	-0.01799	-1.71	Pass
1.995	2,00600	2.109	0.01917	0.86	Pass
1.89	2.06191	2.099	0.01708	0.66	Pass
2.004	2.09569	2.048	-0.04768	-2.98	Fall
9,999	4.05601	4.118	0.06179	1.55	Pass
4	4.05617	4.097	0.05669	0.97	Pass
9,997	4.05522	4.099	0.04976	1.10	Pass
5.005	5.04690	5.107	0.00070	1.21	Pass
4.992	5.09952	5.064	0.05048	1.01	Pass
5.008	5.05024	5.065	0.01476	0.29	Pass
6.004	0.02053	5.890	-0.09959	-1.64	Pass
6.009	6.02755	5.856	-0.07155	-1.18	Pass
5.997	6.02165	6.007	-0.01465	-0.24	Page

Acceptance Orberion: [% Bias] < 2% for each concentration tested.

Fusion QbD instantly creates formal reports with all required tables and graphs.

5. Instant Analysis, Graphing, and Reporting

ICH Q2(R2):

S-Matrix

Representative data (e.g., chromatograms, electropherograms, spectra, biological response) should be used to demonstrate specificity and relevant components should be labelled, if appropriate.

For a purity or impurity test, discrimination can be established by stressing or spiking product to achieve appropriate levels of impurities or related substances and demonstrating the absence of interference.

Browse Delete Imported Images Report Assignments Linearity Chromatogram - 100% Label Claim All Reports and Graphs Image Title Linearity Chromatogram - 100% Label Clai Experiment Design Image Title Linearity Chromatogram - 100% Label Clai All Report Assignments Image Title Linearity Chromatogram - 100% Label Clai Image Title Linearity Chromatogram - 100% Label Clai Image Title Linearity Chromatogram - 100% Label Clai Image Title Linearity Chromatogram - 100% Label Clai
Imported Images Linearity Chromatogram - 100% Label Claim All Reports and Graphs Experiment Design Instrument Report Experiment Design Experiment Setup Data Analysis API - Amount Accuracy Report C Linearity Chromatogram - 100% Label Clai Run Label None Selected Image Title Image T
Linearity Chromatogram • 100% Label Claim Image Title Linearity Chromatogram • 100% Label Clai Run Label None Selected
Image Title Linearity Chromatogram - 100% Label Clai Run Label None Selected Image Title Linearity Chromatogram - 100% Label Clai Image Title Linearity Chromatogram - 100% Label
Inage Title Linearity Chromatogram - 100% Label Clai Run Label None Selected
Image Title Linearity Chromatogram - 100% Label Clai Run Label None Selected Image Title with an algority of a grade with a gra
Image Title Linearity Chromatogram - 100% Label Clai Run Label None Selected Image Title Linearity Chromatogram - 100% Label Clai Image Title Linearity Chromatogram - 100% Label
Image Title Linearity Chromatogram - 100% Label Clai Run Label None Selected Image Title Linearity Chromatogram - 100% Label Clai Image Title None Selected Image Title None Selecte
Image Title Linearity Chromatogram - 100% Label Clai Run Label None Selected Image Title Linearity Chromatogram - 100% Label Clai Image Title Linearity Chromatogram - 100% Label Clai <
Image Title Linearity Chromatogram - 100% Label Clai Run Label None Selected
Image Title Linearity Chromatogram - 100% Label Clai Run Label None Selected
Image Title Linearity Chromatogram - 100% Label Clai Run Label None Selected
Run Label None Selected
201 201 201 201 201 201 201 201 201 201
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Reports can be augmented with images of
i coporto can so augmontoa mar inagoo or
relevant chromatograms.

S-Matrix 5. Instant Analysis, Graphing, and Reporting

All the Critical QbD Capabilities You Need

Critical QbD Capability

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Complete Method Validation Experiment Suite

Simple Experiment Workflows

Full LC Experiment Automation

USP 1210> Tolerance and Prediction Interval Metrics

- Replication Strategy and Total Analytical Error
- Accuracy and Repeatability
- Analytical Method Transfer

Automated Experiment Workflow

Step 3

				С	hro	ma	atogra	aphy [) ata	a So	ftw	/ar	е (CDS	5)		
<u>\</u> 8		Mix p		Matrix - MD		torial - Sa	mple Workup as S	ystem/Administrator	Sample Se								
File	Edit	View	Help	1	1 (- (
13		H	3* 3	• *	X B B	Apply Tab	le Preferences Sam	ple Set Method		•							
66	Vial	lnj Vol (uL)	# of Injs	Label	SampleName	Level	Function	Method Set / Report Method	Label Reference	Processing	Run Time (Minutes)	Data Start (Minutes)	Next Inj. Delay (Minutes)	Column Position	Auto Additions	SampleWeight	Dilution
1							Condition Column				6.70	0.00	0.00	No Change			
2							Condition Column	Text Mix pH 001_017			0.10	0.00	0.00	No Change			
3							Equilibrate	Text Mix pH 001_017			3.00	0.00	7.95	No Change			
4	1	2.0	1	Unk-000-000	Blank - 1		Inject Samples	Text Mix pH 001_017		Normal	10.50	0.00	1.50			1.00000	1.00000
5							Condition Column	Text Mix pH 001_001			0.10	0.00	0.00	No Change			
6							Equilibrate	Text Mix pH 001_001			3.00	0.00	0.00	No Change			
7	2	2.0	1	Unk-001-001	1.a.1.a		Inject Samples	Text Mix pH 001_001		Normal	10.50	0.00	1.50			1.00000	1.0000
8							Condition Column	Text Mix pH 001_002			0.10	0.00	0.00	No Change			
9							Equilibrate	Text Mix pH 001_002			3.00	0.00	0.00	No Change			
10	2	2.0	1	Unk-001-002	2.a.1.a		Inject Samples	Text Mix pH 001_002		Normal	10.50	0.00	1.50			1.00000	1.0000
11							Condition Column				6.70	0.00	0.00	No Change			
12							Condition Column	Text Mix pH 001_003			0.10	0.00	0.00	No Change			
13							Equilibrate	Text Mix pH 001_003			3.00	0.00	0.00	No Change			
14	2	2.0	1	Unk-001-003	3.a.1.a		Inject Samples	Text Mix pH 001_003		Normal	10.50	0.00	1.50			1.00000	1.0000
15							Condition Column				6.70	0.00	0.00	No Change			
16							Condition Column	Text Mix pH 001_004			0.10	0.00	0.00	No Change			
17							Equilibrate	Text Mix pH 001_004			3.00	0.00	0.00	No Change			
18	2	2.0	1	Unk-001-004	4.a.1.a		Inject Samples	Text Mix pH 001_004		Normal	10.50	0.00	1.50			1.00000	1.00000
19							Condition Column	Text Mix pH 001_005			0.10	0.00	0.00	No Change			
20							Equilibrate	Text Mix pH 001_005			3.00	0.00	0.00	No Change			
21	2	2.0	1	Unk-001-005	5.a.1.a		Inject Samples	Text Mix pH 001_005		Normal	10.50	0.00	1.50			1.00000	1.00000
22							Condition Column				6.70	0.00	0.00	No Change			
23							Condition Column	Text Mix pH 001_006			0.10	0.00	0.00	No Change			
24							Equilibrate	Text Mix pH 001_006			3.00	0.00	0.00	No Change			

Automated, Audited Data Exchange Preserves Data Integrity

Automated Experiment Workflow

Preserves Data Integrity

Run on Your LC System

OpenLab – ChemStation Edition

Full Automation for Robustness Studies

Full Automation for Robustness Studies

Full Automation for Robustness Studies

Critical QbD Capability

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Complete Method Validation Experiment Suite

Simple Experiment Workflows

Full LC Experiment Automation

USP 1210> Tolerance and Prediction Interval Metrics

- Replication Strategy and Total Analytical Error
- Accuracy and Repeatability
- Analytical Method Transfer

2. CONSIDERATIONS PRIOR TO VALIDATION

How many individual determinations will compose the reportable value, and how will they be aggregated?

 To answer this question, it is necessary to understand the contributors to the procedure variance and the ultimate purpose of the procedure.

Estimation of variance components during pre-validation provides

useful information for making this decision.

Critical QbD Capability

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Complete Method Validation Experiment Suite

Simple Experiment Workflows

Full LC Experiment Automation

USP 1210> Tolerance and Prediction Interval Metrics

- Replication Strategy and Total Analytical Error
- Accuracy and Repeatability
- Analytical Method Transfer

Replication Strategy Optimization

ICH Q14

Reportable Result: the result as generated by the analytical procedure after calculation or processing and applying the described sample replication. *(ICH Q2)*

ICH Q2(R2)

The experimental design of the validation study should reflect the number of replicates used in routine analysis to generate a reportable result.

USP <1220>

Stage 1:

Optimization of performance characteristics of the analytical procedure such as accuracy, precision, ...; this includes a preliminary replication strategy for samples and standards.

Define your Proposed Replication Strategy, Target Result Value, Acceptance Limits,

Desired TAE Limits, and your Desired Probability and Tolerance (Confidence Interval).

							×
Sigma FPT CP 1.00 322.17 0.33			^ ₩s-N	latrix Tot a	al Analytica nd Guard E	al Error Bands	
2.00 44.43 0.67 3.00 2.7 1.00							Total Analytical Error Distribution
4.00 0.07 1.33 5.00 0.00054 1.67				Lower Acception Lime	ce	Upper Acceptance Limit	
6.00 0.000002 2.00				-20	+20 -2	a +2a	
Replication Strategy Number of preparations x Number of injections per pr Together these settings define the data which are a method	reparation. veraged into the reportable val	ue for the documented	Re	jection Zone Guard Band	Acceptance Zone (Meets Specification)	Guard Biand Rejection	on Zone
Total Analytical Error (TAE) Limits The ± value = the minimum allowable ± distance of a acceptance limit.	given reportable value from th	e corresponding			Safe and Efficacious Rang	pe -	
	Ma affeire Free and an and	ition replicate 1					
Select a Replication Strategy No. of preparation replicates per sample 3 v	No. of injections per prepara						
Select a Replication Strategy No. of preparation replicates per sample 3 Enabled Responses	Target Value	± Acceptance Limits	± Total Analytical Error (TAE) Limits	TAE #o Width	Interval Type	Desired Probability (%)	Tolerance Alpha (%)
Enabled Responses API - Amount	Target Value	± Acceptance Limits 2.000	± Total Analytical Error (TAE) Limits 0 0.30	TAE ≢ơ Width 0 2ơ ∽	Interval Type Tolerance v	Desired Probability (%) 95.1	Tolerance Alpha (%) 00 5.00
Select A Replication Strategy No. of preparation replicates per sample 3 Enabled Responses API - Amount Select All Select None	Target Value	± Acceptance Limits 2.000	+ Total Analytical Error (TAE) Limits 0 0.30	TAE #σ Width	Interval Type Tolerance v	Desired Probability (%) 95.0	Tolerance Alpha (%) 00 5.00

Replication Strategy for the Reportable Value

Between Variables Components of Variation

Variable Name	Variance	Standard Deviation	Degrees of Freedom	t-table Value	(+/-) 95% Confidence Limits	Error Contribution (%)
Sample Preparation	0.008	0.092	4	2.7764	0.25	94.17
Injection	0.001	0.023	20	2.0860	0.04	5.83

Overall Error in a Single Determination

Value
100.051
0.009
0.094
0.094

No. of Injections					No.	of Prepai	rations				
		1	2	3	4	5	6	7	8	9	10
	±2σ	0.2710	0.191	<u>0.1564</u>	0.1355	0.1212	0.1106	0.1024	0.0958	0.0903	0.085
1	T.I.	0.6210	0.380	<u>0.2927</u>	0.2455	0.2151	0.1936	0.1774	0.1647	0.1543	0.145
2	±2σ	0.2670	0.1888	0.1541	0.1335	0.1194	0.1090	0.1009	0.0944	0.0890	0.084
	т.і.	0.5299	0.3421	0.2698	0.2295	0.2029	0.1838	0.1693	0.1577	0.1482	0.140
3	±2σ	0.2657	0.1878	0.1534	0.1328	0.1188	0.1085	0.1004	0.0939	0.0886	0.084
	т.і.	0.4971	0.3288	0.2620	0.2240	0.1988	0.1806	0.1665	0.1553	0.1461	0.138
4	±2σ	0.2650	0.1874	0.1530	0.1325	0.1185	0.1082	0.1002	0.0937	0.0883	0.083
	T.I.	0.4801	0.3221	0.2580	0.2213	0.1968	0.1789	0.1652	0.1542	0.1451	0.137
5	±2σ	0.2646	0.1871	0.1528	0.1323	0.1183	0.1080	0.1000	0.0935	0.0882	0.083
	т.і.	0.4697	0.3180	0.2557	0.2197	0.1955	0.1779	0.1644	0.1535	0.1445	0.136
6	±2σ	0.2643	0.1869	0.1526	0.1322	0.1182	0.1079	0.0999	0.0934	0.0881	0.083
	т.і.	0.4626	0.3152	0.2541	0.2186	0.1947	0.1773	0.1638	0.1530	0.1441	0.136
7	±2σ	0.2641	0.1868	0.1525	0.1321	0.1181	0.1078	0.0998	0.0934	0.0880	0.083
	т.і.	0.4576	0.3133	0.2529	0.2178	0.1941	0.1768	0.1634	0.1527	0.1438	0.136
8	±2σ	0.2640	0.1867	0.1524	0.1320	0.1181	0.1078	0.0998	0.0933	0.0880	0.083
	т.і.	0.4537	0.3118	0.2521	0.2172	0.1937	0.1764	0.1631	0.1524	0.1436	0.136
9	±2σ	0.2639	0.1866	0.1523	0.1319	0.1180	0.1077	0.0997	0.0933	0.0880	0.083
	т.і.	0.4507	0.3106	0.2514	0.2167	0.1933	0.1762	0.1629	0.1522	0.1434	0.136
10	±2σ	0.2638	0.1865	0.1523	0.1319	0.1180	0.1077	0.0997	0.0933	0.0879	0.083
	т.і.	0.4483	0.3097	0.2509	0.2164	0.1931	0.1759	0.1627	0.1521	0.1433	0.135

TOST Analysis Results Summary

Statistic	Value	Pass/Fail
TAE Width (2σ) - Target	±0.300	
Computed TAE Width (2o)	±0.156	Pass
FPT	<0.0001	
Ср	12.2271	
Variance	0.003	
Standard Deviation	0.055	
% RSD	0.05	
% CV	0.05	

Tolerance Interval Analysis Results

Interval Setting	Value	Number of Preparations	Number of Injections per Preparation
Target	100.000	3	1
Acceptance Limits	±2.000		
Desired Probability %	95.00		
Tolerance Alpha %	5.00		
Grand Mean	100.051		
Computed Tolerance Interval	±0.293	Pass	
Required Guard Band Width	±0.300		

The computed Tolerance Interval falls within the defined Total Analytical Error Limits.

Fusion QbD reports the Components of Variation and the Corresponding % Contributions to Total Analytical Error.

Between Variables Components of Variation

Variable Name	Variance	Standard Deviation	Degrees of Freedom	t-table Value	(+/-) 95% Confidence Limits	Error Contribution (%)
Sample Preparation	0.008	0.092	4	2.7764	0.254	94.17
Injection	0.001	0.023	20	2.0860	0.048	5.83

Overall Error in a Single Determination

Statistic	Value
Mean	100.051
Variance	0.009
Standard Deviation	0.094
% RSD	0.094

Fusion QbD also reports the TOST Results (Traditional Precision Only) and the USP <1210> Interval Results (Combined Precision + Bias).

TOST Analysis Results Summary

Statistic Value Pass/Fail TAE Width (20) - Target ±0.300 Computed TAE Width (20) ±0.156 Pass FPT < 0.0001 Ср 12.2271 0.003 Variance Standard Deviation 0.055 0.05 % RSD % CV 0.05

Tolerance Interval Analysis Results

Interval Setting	Value	Number of Preparations	Number of Injections per Preparation
Target	100.000	3	1
Acceptance Limits	±2.000		
Desired Probability %	95.00		
Tolerance Alpha %	5.00		
		-	
Grand Mean	100.051		
Computed Tolerance Interval	±0.293	Pass	
Required Guard Band Width	±0.300		

The computed Tolerance Interval falls within the defined Total Analytical Error Limits.

Critical QbD Capability

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Complete Method Validation Experiment Suite

Simple Experiment Workflows

Full LC Experiment Automation

USP 1210> Tolerance and Prediction Interval Metrics

- Replication Strategy and Total Analytical Error
- Accuracy and Repeatability
- Analytical Method Transfer

S-Matrix <1210> Statistical Tools for Procedure Validation

3. ACCURACY AND PRECISION

3.2 Combined Validation of Accuracy and Precision

The illustration below shows that the method will pass System Suitability performance for the Critical Quality Attribute (CQA) being tested SST when Accuracy (β – bias estimate) and Precision (σ – variation estimate) are assessed independently (= High Risk Approach).

S-Matrix <1210> Statistical Tools for Procedure Validation

3. ACCURACY AND PRECISION

3.2 Combined Validation of Accuracy and Precision

However, as the illustration below shows – the method does not have acceptable System Suitability performance for the Critical Quality Attribute (CQA) being tested when both Accuracy (β – bias estimation) and Precision (σ – variation estimation) **are assessed together (= Low Risk Approach).**

Simple Analysis Setup Wizard

Define your Acceptance Limits:

- Compound-based USP <1210>
- Computed Results
- Source Data

Perform Data An esponse Treatme	alysis						
esponse Treatme							
) % Recovered (nt Relative) () Difference from Me	ean (Absolute)					
ompound-based /	Acceptance Criteria						
Tolerance / Pro	ediction Interval						
Tolerance	O Prediction						
Name	Value	Init					
Specification Lim Desired Probabili	its <= 0.20 m ty 95.00 %	<u>م</u>					
Folerance Alpha	5.00 %	6 ¥					
evel-based Accep Computed Result	tance Criteria		Source Data				
	0.* 80.				Set Limit	2.000 %	Appl
Target Level	[368 \$38 Accuracy Bias (%) <=		Mean Value	Individual Result LSL (mg)	Set Limit	2.000 % idual Result USL	Appl
Target Level	[38] [38] Accuracy Bias (%) <=		Mean Value 5.000 5.000	Individual Result LSL (mg)	Set Limit Indiv (mg)	2.000 % idual Result USL	Appl
Target Level 1.000 2.000 4.000	[38] [38] Accuracy Blas (%) <=		Mean Value 1.055 5.000 5.000 4.105	Individual Result LSL (mg)	Set Limit Indiv (mg) 1.034 2.043 4.023	2.000 % idual Result USL	App
Target Level 1.000 2.000 4.000 5.000	208 158 Accuracy Bias (%) <=		Mean Value 5.000 1.055 5.000 2.084 5.000 4.105 5.000 5.085	Individual Result LSL (mg)	Set Limit Indiv (mg) 1.034 2.043 4.023 4.984	2.000 % idual Result USL	App 1 2 4 5

Automated Reporting – all Results and Graphs for Accuracy, Linearity, Repeatability, and USP <1210> Intervals.

General Regression Statistics

Regression Statistic Name	Statistic Value		
R Square	0.9999		
Adj. R Square	0.9999		
Residual MSE	682,072,000		
Standard Error (±)	26,117		
+/- 95% C.I.	56,421		
Observations	15		

General Validation Acceptance Criteria

Regression Statistic Name	Statistic Value	Validation	Pass / Fail
R	1.0000	0.9998	Pass
Intercept % Bias - Data Based	-0.17	2.00	Pass

Accuracy Results

Target API (mg)	Mean Observed API - Amount (mg)	Standard Deviation	Lower 95% Confidence Limit	Upper 95% Confidence Limit	RSD (%)	Mean % Bias	Accuracy % Bias <=	% Bias Pass/Fail
1.000	1.055	0.031	0.921	1.190	2.96	4.654	5.000	Pass
2.000	2.084	0.032	1.948	2.221	1.52	4.412	5.000	Pass
4.000	4.105	0.012	4.055	4.155	0.28	2.659	5.000	Pass
5.000	5.085	0.021	4.995	5.176	0.41	1.666	5.000	Pass
6.000	5.964	0.039	5.796	6.133	0.66	-0.616	5.000	Pass

Tolerance Interval

Name	Value	
Desired Probability %	95.00	
Tolerance Alpha %	5.00	1.51
Target	0.00	
Mean (Pooled)	0.058	
Specification Limits (mg)	-0.20 <= Target <= 0.20	-0.2
Computed Interval (mg)	-0.04 <= Mean <= 0.16	
Result	Pass	

Variable Name	Coefficient Value	Coefficient Standard Error	Coefficient t Statistic	P-Value	Lower 95% Confidence Limit	Upper 95% Confidence Limit
Intercept	-11,549	14,735	< 0.0001	0.4472	-43,382	20,283
API	1,715,593	3,638	471.5873	< 0.0001	1,707,734	1,723,452

Natural Variable Model

API - Area (pred) = -11,549 + (1,715,593 x API - Weight Amount)

<u>Range</u>

Critical QbD Capability

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Complete Method Validation Experiment Suite

Simple Experiment Workflows

Full LC Experiment Automation

USP 1210> Tolerance and Prediction Interval Metrics

- Replication Strategy and Total Analytical Error
- Accuracy and Repeatability
- Analytical Method Transfer

S-Matrix. USP (1224) – Transfer of Analytical Procedures

Comparative Testing

Comparative testing requires the analysis of a predetermined number of samples of the same lot by both the sending and the receiving units. Other approaches may be valid, e.g., if the receiving unit meets a predetermined acceptance criterion for the recovery of an impurity in a spiked product. Such analysis is based on a preapproved transfer protocol that stipulates the details of the procedure, the samples that will be used, **and the predetermined acceptance criteria**, <u>including acceptable variability</u>. Meeting the predetermined acceptance criteria is necessary to assure that the receiving unit is qualified to run the procedure.

Analytical Method Transfer Example

Key Benefits of FMV

1. Consistency – Workflow and Reporting.

Work is standardized – done the same way every time. Reporting is standardized, complete, easy to communicate.

2. Simplicity

Tremendous ease of use. Very brief learning curve. Clearly defined templatable workflows with built-in workflow management.

3. Speed (Productivity)

Automation and simplified workflows dramatically increase productivity. Review process is minimized and simplified.

4. Regulatory Alignment and Completeness

All required validation experiment types are supported. Reporting meets regulatory requirements. Reports can be attached to Project specific narrative documents.

Key Benefits of FMV

5. Platform Independence

Support for Empower, ChemStation, and Chromeleon means that the standardized workflows and reporting can be easily extended to users of other platforms at other sites or other companies (e.g. CMOs).

6. Customer Support

Our support is top-rated worldwide. S-Matrix and our local distributors have a multi-year history of proven ability to meet all our customer's support needs.

End of Presentation

Analytical Procedure Lifecycle Management Workflow

