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Abstract 
 
 
This three-part article series describes a Quality by Design (QbD) methodology for 

chromatographic method development work. In part one the authors examined the current 

approaches to column and solvent screening in terms of experimental region coverage – a key 

element of the LC process knowledge required for establishing the final design space. Part two of 

the series described novel data treatments to both accelerate and bring quantitation to the column 

and solvent screening work. This third and final installment of the series extends the new QbD-

based methodology to the formal method development phase. Here Design of Experiments 

(DOE) methods are used in combination with simulation modeling to fully characterize the LC 

process. This process knowledge is in turn used to establish a final design space. 
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Introduction 
 
Quality-by-Design (QbD) is a methodology gaining widespread acceptance in the 
pharmaceutical industry. A core tenet of this methodology is the idea of establishing the final 
design space of a product or process as a primary R&D goal. Many articles have recently been 
published describing the successful application of QbD to process development. By recognizing 
a liquid chromatograph (LC) instrument as a small process-in-a-box one can readily see the 
applicability of QbD to LC method development. 
 
ICH Q8 defines a design space as “The multidimensional combination and interaction of input 
variables (e.g., material attributes) and process parameters that have been demonstrated to 
provide assurance of quality.”[1] Two key elements of this definition warrant brief discussion. 
First, the phrase “multidimensional combination and interaction” clearly indicates that the 
“design space” should be characterized by studying input variables and process parameters in 
combination, and not by a univariate (one-factor-at-a-time) approach. Second, the term “design 
space” is one of many terms used in the Design of Experiments (DOE) lexicon to denote the 
geometric space, or experimental region, which can be statistically sampled by a formal 
experimental design. Other terms in common use include design region, factor space, and “joint 
factor space”.[2] However, the phrase demonstrated to provide assurance of quality clearly 
defines this design space as a subset region of an experimentally explored region in which 
performance is acceptable. Therefore, in this article the term Experimental Region refers to the 
geometric region described by the ranges of LC parameters studied in combination by a formal 
experimental design. When the experimental results are of reasonable quality, DOE can translate 
the experimental region into a Knowledge Space within which all important instrument 
parameters are identified, and their effects on method performance are fully characterized. As 
DOE is fundamentally a model building exercise, this translation is accomplished by deriving 
equations (models) from the experimental results. Given that the equations have sufficient 
accuracy and precision, they can then be used to directly establish the ICH-defined design space. 
The instrument parameter settings in the final LC method thus represent a point within the design 
space. The design space itself represents a region surrounding the final method bounded by 
edges of failure; parameter setting combinations inside the bounds have acceptable method 
performance, parameter setting combinations outside the bounds do not. 
 



 

A QbD Methodology for Rapid LC Methods Development Part 3 
© 2012 S-Matrix Corporation. All rights reserved. Page 3 

QbD for Formal Method Development 
 
Many pharmaceutical companies have adopted a two-phase approach to LC method development 
work in which column/solvent screening experiments are done as Phase 1, followed by formal 
method development as Phase 2. Part two of this article series described a QbD methodology for 
Phase 1 in which formal experimental design is used to study column type, organic solvent type, 
and pH. It also introduced the use of novel Trend Responses™ to overcome knowledge 
limitations common to column/solvent screening studies due to the compound co-elution and 
changes in compound elution order across experiment trials (peak exchange). Figure 1 presents a 
QbD-based workflow proposed for Phase 2 experiments by which an LC method design space 
can be established. As for the column/solvent screening work, a formal experimental design 
approach is used in Phase 2. 
 
Figure 1. QbD Methodology for Phase 2 
 

 
 
Defining the Experimental Region 
 
The first step in the QbD workflow is defining the experimental region. In LC method 
development knowledge of the target compound properties usually determines which instrument 
parameters are selected for study (Step 1.a). A mistake commonly made in Step 1.b is setting 
small study ranges analogous to those typically used in method validation for robustness 
experiments. In such an experiment each variable’s range is normally set to the expected ±3.0σ 
variation limits about its setpoint, as a robustness experiment’s purpose is to test the “null” 
hypothesis - that the factor has no statistically significant effect on method performance across 
its expected noise range. However, even critical parameters will have inherently small effects 
across their noise ranges (low signal-to-noise ratio), which makes a robustness experimental 
approach inappropriate to the QbD method development goal of deriving precise and accurate 
models of study variable effects. Therefore, as a rule of thumb the experiment variable ranges 
should be set to a minimum of 10 times their expected noise ranges, and unless restricted by 
engineering constraints, should never be set to less than 5 times these ranges. 

1. Define the Experimental Region 
 

a. Select study factors 
b. Define study ranges or levels 

2. Develop the Knowledge Space 
 

a. Conduct a formal experimental design 
b. Analyze data - model all factor effects 

3. Establish the Design Space 
 

a. Define optimum operating conditions 
b. Define acceptable operating ranges 
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Table 1 presents a template which defines a proposed experimental region for the formal method 
development phase. As for the Phase 1 template previously presented, this template can be 
modified as needed to accommodate the specific LC instrument system and compounds that 
must be resolved. 
 
Table I. Phase 2 Experiment Template 
 
Experiment Variable Traditional HPLC UPLC 
Temperature (°C) Constant at 30° 50 - 80 
Pump Flow Rate (mL/min) 0.7 - 1.5 0.1 - 0.5 
Gradient Slope (% Organic) - 
     Vary Final Conditions 

Initial %: 5.0 
Final % Range: 60.0 - 95.0 

Initial %: 5.0 
Final % Range: 60.0 - 95.0 

 
 
Developing the Knowledge Space 
 
Step 2 in the QbD Workflow first involves generating and carrying out a statistical experimental 
design. Selecting the statistical experimental design is a critically important step; there is a wide 
variety of statistical design types, each of which has specific information properties and is 
intended to support a specific analysis model. In practical terms this means that not all statistical 
designs have the same ability to (1) identify which variables are important, and (2) quantify 
variable effects. Unfortunately, it is very commonly observed that an experimenter will select a 
design based on its “size” - the required number of experiment trials for a given number of study 
variables, and neglect the underlying model form when analyzing the data. A typical example is 
the widespread use of highly fractionated factorial designs such as the popular Plackett-Burman 
designs. These designs are two-level fractional factorial designs for studying N-1 variables in N 
runs, where N is a multiple of four. The simplest case is the N=4 design for studying three 
variables at two experimental levels each in four trials. Figure 2 illustrates this design for three 
variables, designated X1, X2, and X3, at standardized low (-) and high (+) levels. The figure 
shows the low and high level settings of the three variables in the four trials, and also the derived 
level settings of the two-way effects terms - obtained by multiplying the level settings of the 
parent main effects terms in each row. These level settings are used in the data analysis to relate 
the variable’s linear additive (main) effects and two-way (pairwise interaction) effects, 
respectively to observed changes in a given result across the experiment trials. A simple 
examination of the level setting patterns for these terms reveals the perfect correlation of the 
interaction terms with the main effects terms across the experiment trials. This correlation pattern 
is deliberate in Plackett-Burman designs, which are primarily intended for screening large 
numbers of variables to determine if the variables have any significant effects which warrant 
further study. Deliberate correlation such as this is termed effects aliasing. These designs support 
a linear model, and the aliasing must be considered in the interpretation of results, since it can 
not be eliminated by data analysis. This means that any observed effect which the linear model 
ascribes to say X1 may be due in whole or in part to the aliased X2*X3 term - the interaction of 
X2 with X3. More experiment trials are required to break the aliasing and make the correct 
assignments of effects. It should be clear from this discussion that care must be taken when 
selecting the statistical experiment design, and the information properties of the design must not 
be forgotten when analyzing data and reporting results. 
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Figure 2. Plackett-Burman Design - N = 4 
 

 
 
Careful execution of Steps 1-2.a will correctly stage the experiment to provide the scientific 
knowledge required to accurately establish the design space for the analytical method in a 
manner consistent with current ICH guidances: “The information and knowledge gained from 
pharmaceutical development studies and manufacturing experience provide scientific 
understanding to support the establishment of the design space, specifications, and 
manufacturing controls.”[1] To illustrate this we will describe a Phase 2 experiment carried out 
according to the QbD approach using the sample mix from the Phase 1 “proof-of-technology” 
experiment described in part two of this article series. The sample mix used in that experiment 
contained 14 compounds: two APIs, a minimum of nine impurities which are structurally related 
to the APIs (same parent ion), two degradants, and one process impurity. The LC instrument 
platform, which will again be used for this experiment, is a Waters® ACUITY UPLC® System 
(UPLC). Based on the Phase 1 experiment results, the experimental region was defined by 
modifying the Phase 2 experiment template in two ways. First, pH and gradient time were shown 
to be critical effectors with optimum settings of at 6.8 and 9.5 minutes, respectively. They were 
therefore again studied in this experiment to further characterize their effects and establish 
correct operating ranges. Second, since shallower gradients with high end points were indicated 
to perform better, the gradient slope was studied by varying the initial conditions with a constant 
end point. A statistical experimental design was then generated which would support using full 
cubic model in the analysis of the results. 
 
Table II. Example Phase 2 Experiment 
 

Experiment Variable Range or Levels 
Pump Flow Rate (mL/min) 0.1 - 0.5 
pH 6.6, 7.1 
Gradient Time (min) 5 - 11 
Gradient Slope (% Organic) - 
     Vary Initial Conditions 

Initial %: 50.0 - 80.0 
Final %: 95.0 
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Once the experiment was run, two unique Trend Responses described in Article part two were 
derived directly from the chromatogram results (responses). These were: “No. of Peaks” - the 
number of integrated peaks in each chromatogram, and “No. of Peaks ≥ 1.50 - USP Resolution” - 
the number of integrated peaks which are baseline resolved in each chromatogram. In addition, 
peak tracking was done on the two APIs and the two impurities from which they are difficult to 
separate. Peak tracking was facilitated by spiking the sample mix such that API 1 was at a 
significantly higher amount than API 2, which enabled the two related compounds to be easily 
distinguished in the experiment chromatograms. 
 
Analysis of the experiment data sets yielded a prediction model for each response which 
identified the important effectors and characterized their effects on the response. Figure 3 
illustrates how such a model can be used to predict a response. The figure shows the general 
form of a partial quadratic model which predicts the resolution of a critical peak pair (Rs) as a 
function of two experiment parameters, in this case the pump flow rate (variable X1) and the 
initial percent organic of the gradient method (variable X2). 
 
Figure 3. Prediction of Mean Performance 
 

 
 
From Figure 3 one could anticipate that by iteratively entering level setting combinations of the 
two study factors and evaluating the predicted results, one could identify the best method 
obtainable within the variable ranges in terms of the resolution response. One could then plot 
these iteratively predicted responses in terms of relative acceptability. For example, given a 
resolution goal of ≥ 1.50, one could generate a modified contour plot of the resolution response 
in which study factor combinations corresponding to predicted resolution responses below 1.50 
are indicated in color, as illustrated in Figure 4. 
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Figure 4. Region of Acceptable Mean Performance 
 

 
 
The dark green line in Figure 4 demarcating the shaded and unshaded regions corresponds to 
level setting combinations which are predicted to exactly meet a minimum acceptability value of 
1.50 for the critical-pair resolution response within the variable ranges. The demarcation line 
therefore represents the predicted edge of failure for this response, as defined in the ICH 
guidance: “The boundary to a variable or parameter, beyond which the relevant quality 
attributes or specification cannot be met.”[3] Taken together, the prediction model (Figure 3) 
and the corresponding contour plot (Figure 4) numerically and graphically represent the 
quantitative knowledge space obtained from the DOE experiment for the resolution response. 
 
As discussed in part two of this article series, the models obtained for all responses can be linked 
to a numerical search algorithm to identify the overall best-performing study variable settings 
considering all responses simultaneously. In addition, a contour plot like the one in Figure 4 can 
be generated for each modeled response, and these plots can be overlaid to visualize the global 
region of acceptability, as illustrated in Figure 5. The region of acceptability is consistent with 
the ICH definition of a design space from a mean performance perspective only. 
 
Figure 5. Global Region of Acceptability 
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Establishing the Design Space 
 
It must be understood that each model derived from the experiment results is a single point 
predictor of a mean response given the input of a level setting for each study factor (i.e., a 
candidate method). In other words, for a given candidate method the model predicts the mean 
(arithmetic average) of the individual resolution values which would be obtained over many 
injections. The model does not directly predict the magnitude of the variation in the injections, 
and so cannot directly provide any knowledge of the relative robustness of the candidate method. 
The region of acceptability illustrated in Figure 5 is therefore only consistent with the ICH 
definition of a design space from a mean performance perspective. Since method performance 
varies, methods at or near the edge of failure will only perform acceptably on average. This 
means that the edges of failure must be moved inside the mean performance design space to 
accommodate robustness. This “reduced” design space has been referred to as the “process 
operating space”.[3] The question is then how far inside the mean performance design space 
should the edges of failure be located. Moving them in too far may be overly restrictive and 
require a level of control that is too costly or unavailable, while not moving them in far enough 
increases the risk of unacceptable performance. The next section describes in detail how to 
determine the optimum method and the final design space in terms of both mean performance 
and robustness without the need to conduct additional experiments. 
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Characterizing Method Robustness 
 
Integrating quantitative robustness metrics into LC method development is critically important 
for the simple reason that two candidate methods can provide the same mean performance but 
very different robustness. This is illustrated in Figure 6 for two methods designated A and B. 
Both methods have the same mean performance, meaning that on repeated use they have the 
same average ability to separate a critical compound pair. But Method A performance varies 
excessively in response to inherent variation in critical LC instrument parameters while Method 
B performance does not. Unfortunately, it is not possible to determine the relative robustness of a 
given candidate method by inspecting a resulting chromatogram, and so by simple inspection 
Method A could easily be identified as an acceptable method. 
 
Figure 6. Mean Performance versus Robustness 
 

 
 
The lack of accurately characterizing robustness in method development is a common reason 
why many methods must be redeveloped each time they are to be transferred downstream in the 
drug development pipeline in order to meet the stricter performance requirements that will be 
imposed on them. The statements reproduced below express how important this integration is in 
the view of the FDA and the ICH. Although the goal is clearly stated, the guidances do not 
define how to accomplish such a task. The new methodology presented in this article has been 
developed in response to both the stated need for integrating robustness into LC method 
development work and the lack of a defined “how to” approach. 
 

FDA Reviewer Guidance [5]. COMMENTS AND CONCLUSIONS 
 

HPL Chromatographic Methods for Drug Substance and Drug Product. 
 

Methods should not be validated as a one-time situation, but methods should be validated and designed by the 
developer or user to ensure ruggedness or robustness throughout the life of the method. 

 
ICH Q2B [6]. X. ROBUSTNESS (8) 

 
The evaluation of robustness should be considered during the development phase and depends on the type of 
procedure under study. It should show the reliability of an analysis with respect to deliberate variations in 
method parameters. 
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To meet the needs of a working analytical lab the new methodology was required to meet three 
important requirements: 
 

1. Be based on statistically rigorous QbD principles. 

2. Integrate quantitative robustness metrics without additional experiments. 

3. Maximize the use of automation to reduce time, effort, and error. 

 
In meeting these three requirements, the new methodology represents the automation of a best-
practices approach in which LC methods can be rapidly developed and simultaneously optimized 
for mean chromatographic performance and method robustness. This new methodology employs 
Monte Carlo simulation, a computational technique by which mean performance models are used 
to obtain predictions of performance variation. A detailed description of Monte Carlo simulation 
is beyond the scope of this paper. For purposes of illustration, the technique is outlined in the 
five basic execution steps defined below and illustrated in Figure 7 for the two study factors 
previously discussed. It is important to note that this approach correctly represents a study 
factor’s variation as random, normally distributed setpoint error, and that the entire error 
distribution of each factor is simultaneously represented in the robustness computation. 
 

1. A setpoint variation distribution is generated for each study factor using a Normal 
(Gaussian) distribution template with ±3.0σ limits set to the ±3.0σ variation limits 
expected for the factor in normal use. 

 
For example, a given target LC system may have expected ±3.0σ variation limits of 
±2.0% about the endpoint percent organic defined in a gradient method. 

 
2. A candidate method is selected. The method defines the setpoint level setting of each 

study factor. 
 

3. For each study factor the setpoint variation distribution is centered at the setpoint level 
setting, which thus becomes the effective mean value of the distribution, and a very large 
number of level settings - say 10,000 - are then obtained by randomly sampling the 
variation distribution. 

 
4. The mean performance model then generates 10,000 predicted results - one for each of 

the 10,000 variation distribution sampling combinations of the study factors. Note that 
this is a correct propagation of error simulation, since all study factor random variations 
are simultaneously propagated through the model. 

 
5. The variation distribution of the 10,000 predicted results is then characterized, and the 

±3.0σ variation limits are determined. 
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Figure 7. Prediction of Performance Variation 
 

 
 
For a given candidate method the Monte Carlo simulation approach provides a quantitative 
measure of the variation in a modeled response in the form of predicted ±3.0σ variation values. 
This is a good starting point; what is then needed is an independent scale for determining 
whether the magnitude of the predicted variation is acceptable. For this we employ the Process 
Capability index (Cp) - a Statistical Process Control (SPC) metric widely used to quantify and 
evaluate process output variation in terms of critical product quality and performance 
characteristics. Cp is the ratio of the process tolerance to its inherent variation, and is computed 
as shown in Equation 1. Coupling the simulation result with the calculated Cp enables a direct 
comparison of the relative robustness performance of alternative methods.[7] 
 
Note that tolerance limits may be used in Equation 1 rather than the more traditional 
specification limits, since there may or may not be absolute specifications for acceptable 
variation in critical method performance attributes such as resolution to which this calculation 
will be applied. 
 
Equation 1. Calculation of the Process Capability Index 
 

variation6
LSLUSLCp σ

−
=  

 
In Equation 1, USL and LSL are the upper and lower specification limits for a given response, 
and the 6σ variation is the amount of the total variation about the mean result bounded by the 
±3σ variation limits. Cp is therefore a scaled measure of inherent process variation relative to the 
tolerance width. Figure 8 illustrates the Cp calculation elements for the critical pair resolution 
response described above given a mean resolution ( X ) of 2.00 and specification limits of ±0.50. 
In classical SPC a process is deemed capable when its measured Cp is ≥1.33. The value of 1.33 
means that the inherent process variation, as defined by the 6σ interval limits, is equal to 75% of 
the specification limits (4/3 = 1.33). Conversely, a process is deemed not capable when its 
measured Cp is ≤1.00, as the value of 1.00 means that the 6σ interval limits are located at the 
specification limits. 
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Figure 8. Robustness Cp - Critical Pair Resolution Response 
 

 
 
The Cp metric can be applied directly to each modeled response to (1) determine the relative 
robustness of a candidate method in terms of the response, and (2) evaluate the robustness on a 
standardized acceptability scale. However, it is apparent from Equation 1 that the Cp value 
computed for a given candidate method depends directly on the tolerance limits defined for the 
response. One should therefore follow the basic rules listed below when specifying the 
specification limits to be used in the Cp calculation. 
 

1. Specification limits should be defined in the units of the response. 
 

2. Specification limits should be defined as a symmetrical delta (±Δ) which delineates a 
relative tolerance range and not as absolute USL and LSL values. 

 
The ±Δ limits will be applied to different candidate methods to determine their relative 
robustness by computing their Cp values. Absolute USL and LSL values can not be used, 
since the mean response will vary across a set of candidate methods being evaluated. 

 
3. The magnitude of the tolerance limit delta should be consistent with the performance 

goals defined for the critical response being evaluated. 
 

As an example, a reasonable method development goal is to achieve a mean resolution of 
≥2.00 for a critical compound pair. Therefore, an appropriate tolerance limit delta for this 
response would be ±0.50; this sets the LSL at 1.50, which corresponds to baseline 
resolution. Note that ever increasing resolutions are usually not desirable, since as the 
peaks move farther apart they are also moving closer to other peaks. 

 
The Monte Carlo simulation approach is used to obtain a Robustness Cp value for each method 
included in the DOE experiment for each modeled response. These Robustness Cp results are 
then modeled as additional response data sets. Recall that the mean performance model of a 
given result such as resolution represents the combined effects of the study factors on the 
response within the knowledge space, and predicts the mean result for a given combination of 
study factor level settings. Likewise, the corresponding Robustness Cp model represents the 
combined effects of the study factors on resolution variation within the knowledge space, and so 
predicts the resolution variation obtained for a given combination of study factor level settings. 
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Establishing the Final Design Space 
 
The mean performance and Robustness Cp models for the previously described responses were 
linked via numerical optimization routines to identify the study factor level settings that would 
simultaneously meet mean performance and robustness goals for all responses. The original 
optimization goals set for the two APIs and their problem impurities were a mean resolution (Rs) 
of ≥ 2.00 and a Robustness Cp of ≥ 1.33, using tolerance limits of ±0.50 for the resolution 
Robustness Cp calculations. However, the numerical optimization results identified that the best 
mean performance obtainable within the experimental region was Rs ≥ 1.75 for the APIs with 
their respective problem impurities, and Rs ≥ 1.50 for one of the problem impurities with its 
nearest eluting neighbor impurity. Robustness Cp results were therefore re-computed using 
tighter tolerance limits of ±0.25 and ±0.10, respectively. Table III lists the “best performing 
method” identified by the Automated Optimizer relative to the new goals for peak visualization, 
baseline resolution, and method robustness. 
 
Table III. Numerical Optimizer Result 
 

Study Variable Name 
Optimizer Answer 
Level Setting 

Pump Flow Rate 0.5 

Gradient Time 8.3 

Initial % Organic 55 

pH 7.1 

 
Figure 9 illustrates the final design space for Pump Flow Rate and Initial % Organic (Gradient 
Time = 8.3 minutes, pH = 7.1) as the reduced unshaded region bounded by the new narrower 
edges of failure required for the responses. Figure 10 is an expanded (zoom in) view of this 
design space generated by reducing the graphed variable ranges to ranges which just bracket the 
new edges of failure. 
 
Figure 9. Final Design Space 
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Figure 10. Final Design Space - Expanded View 
 

 
 
Finally, Figure 11 is the chromatogram obtained by analyzing the sample using a method in 
which the instrument parameters were set to the optimum settings identified by the two 
experiments. As the figure shows, all compounds are baseline resolved - a result which was not 
achieved in the prior development effort which involved more traditional approaches and was 
underway for over two months. It is especially noteworthy that the combined Phase 1 and Phase 
2 experimental work required to obtain this final method consisted of two multi-factor 
statistically designed experiments, both of which were run on the UPLC overnight in a fully 
automated (walk-away) mode. 
 
Figure 11. Chromatogram from Optimized Method 
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Conclusions 
 
 
A Phase 1 - Column/Solvent Screening experiment carried out using the new QbD methodology 
and software capabilities described in this article series can identify the correct analytical 
column, pH, and organic solvent type to use in the next phase of method development. Once 
these instrument parameters are identified, the second phase of method development involves 
studying the remaining important instrument parameters, again according to the new QbD 
methodology, to obtain a method that meets mean performance requirements. However, in LC 
method development the commonly used experimental approaches to establishing a design space 
only address method mean performance - robustness is usually only evaluated separately as part 
of the method validation effort. The novel QbD methodology described here combines Design of 
Experiments methods with Monte Carlo simulation to successfully integrate quantitative 
robustness metrics into LC method development. This combination enables a rapid and efficient 
QbD approach to method development and optimization consistent with regulatory guidances. 
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